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We study the problem of localization in a disordered one-dimensional nonlinear 
medium modeled by the nonlinear Schr6dinger equation. Devillard and 
SouiUard have shown that almost every time-harmonic solution of this random 
PDE exhibits localization. We consider the temporal stability of such time- 
harmonic solutions and derive bounds on the location of any unstable eigen- 
values. By direct numerical determination of the eigenvalues we show that these 
time-harmonic solutions are typically unstable, and find the distribution of 
eigenvalues in the complex plane. The distributions are distinctly different for 
focusing and defocusing nonlinearities. We argue further that these instabilities 
are connected with resonances in a Schr6dinger problem, and interpret the 
earlier numerical simulations of Caputo, Newell, and Shelley, and of Shelley in 
terms of these instabilities. Finally, in the defocusing case we are able to 
construct a family of asymptotic solutions which includes the stable limiting 
time-harmonic state observed in the simulations of Shelley. 
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1. I N T R O D U C T I O N  

T h e  p h e n o m e n a  o f  l oca l i z a t i on  was  first s tud ied  in c o n d e n s e d  m a t t e r  

phys ics  as a m o d e l  for  the  c o n d u c t i o n / i n s u l a t i o n  o f  e l ec t rons  in d i s o r d e r e d  

lat t ices.  I n  a periodic la t t ice  a single e l ec t ron  is g o v e r n e d  by  the  S c h r 6 d i n g e r  

e q u a t i o n ,  

i~, = -~bxx + U(x)  ~b 

where  the  periodic p o t e n t i a l  U(x) r ep resen t s  the  u n d e r l y i n g  lat t ice.  T h e  

s p e c t r u m  o f  such  a S c h r 6 d i n g e r  o p e r a t o r  cons is t s  o f  b a n d s  o f  c o n t i n u o u s  
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spectrum separated by gaps, with no point spectrum (Bloch's theorem). 
This implies that, as in the case of the free Schr6dinger equation, the 
variance of an initial wave-packet will grow quadratically in time: 

( x 2 > - ( x > 2 o c t  2 where ( . ) = f ( . ) ~ * d x  

In 1958 Anderson tl) discovered a striking result: If the periodic Schr6dinger 
problem is perturbed by the addition of a random potential V(x, 09) of any 
amplitude, 

it~t = - ~bxx + U(x) ~ + V(x, co) 

then an initially localized wavepacket will remain localized for all time, and 
true wave propagation does not take place. More precisely, a wave packet 
evolving in any one-dimensional disordered medium has a variance which 
grows strictly slower than quadratically for large times, 

<X2> - - < X )  2 
t2 ~ 0, as t--* +00 

This was later proven by Fr6hlich and Spencer, ~2) who showed exponential 
decay of the Green's function. This implies ~3) the absence of absolutely 
continuous spectrum. It was later shown that the spectrum of the random 
Schr6dinger operator has only pure point spectrum. ~8) For the scattering 
problem, this implies that the transmission coefficient decays to zero 
exponentially with the length of the medium. 

The phenomena of localization in linear systems is so striking both 
mathematically and physically that it is compelling to ask whether it per- 
sists in the presence of nonlinearities, t9-~3" 8, 14, 15) The nonlinear Schr6dinger 
(NLS) equation, 

i~t = -~bxx + V(x) ~O + fl I~1 z ~b, 

is a canonical equation which describes nearly monochromatic, weakly 
nonlinear and strongly dispersive classical waves. In this framework of non- 
linear waves, it is natural to consider the additional effects of a random 
inhomogeneity. Furthermore, the random NLS equation might also be 
relevant in a quantum setting, as a Hartree-Fock or mean-field approxi- 
mation to a large number of quantum particles in a common (random) 
potential interacting with each other via a delta function interactions. This 
potential quantum application is considered in Ref. (16). 
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The central issue is the competition between nonlinear and random 
effects. In the absence of a potential V(x, to), the random NLS equation 
reduces to the cubic Schrrdinger equation, which is integrable by the 
Inverse Scattering Transform, and has very different behavior depending 
upon the sign of fl ( f l < 0 - a  focusing medium, B > 0 - a  defocusing 
medium). In the absence of nonlinearity (f l=0),  we have a one-dimen- 
sional Schrrdinger equation with a random potential, as discussed above. 

Previous work has considered the combined effects of nonlinearity and 
randomness. Devillard and Souillard ~~ have shown that a class of time- 
harmonic solutions to the random nonlinear Schrrdinger equation exhibits 
localization. They show further that the decay of a transmission coefficient 
is slower than exponential. Knapp, Papanicolaou, and White ~ '  ~7) have 
made a detailed study of the time-harmonic, random NLS equation subject 
to two-point boundary conditions. In this situation, solutions to this 
boundary value problem are not unique, and they find that the multiplicity 
of solutions tends to inhibit localization. Note that these two studies are 
not in conflict, as they consider different boundary conditions. Doucot and 
Rammal ~8) consider the problem of localization in a random NLS equation 
by using invariant imbedding techniques. Finally, we refer the reader to 
the survey article of Gredeskul and Kivshar. ~4) All of these works are 
concerned primarily with time-harmonic solutions to the random NLS 
equation. Such solutions have interesting properties, but the question of 
their stability is open. The stability of such solutions will be a major thrust 
of this paper. 

In this paper we present a study, for the random NLS equation, of 
the competition between nonlinearity and randomness, and the effects of 
this competition upon localization. We focus specifically on nonlinear 
states and their linear instabilities as mechanisms for the destruction of 
localization. This general study uses numerical simulation, together with 
formal asymptotic calculations and some mathematical analysis, to unveil 
qualitative properties of the delocalized field--qualitative properties that 
are distinct in focusing and defocusing media. 

The paper is structured as follows: In Section 2, the fixed input 
and fixed output boundary value problems are defined, and the results of 
Devillard and Souillard on the fixed output problem are briefly sum- 
marized. In addition, numerical results and observations on the fixed 
output problem are presented. In Section 3, a synopsis is given of the 
numerical results of Caputo, Newell, and Shelley, ~9) and of Shelley ~8) for 
the fully time-dependent random NLS equation. These numerical simula- 
tions show that localized time-harmonic solutions are not those actually 
observed, suggesting that such time-harmonic solutions are unstable. In 
Section 4, we consider the linearized stability of time-harmonic solutions, 
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which is governed by a non-self-adjoint eigenvalue problem, and derive 
bounds on the locations of unstable eigenvalues in the complex plane. In 
Section 5, we solve this eigenvalue problem numerically, and find generi- 
cally that these solutions are indeed unstable. By computing the spectra for 
many realizations of the random potential, we are able to find the distribu- 
tion of eigenvalues in the complex plane--distributions that are distinct for 
focusing and defocusing nonlinearities. We also argue that the instabilities 
are connected to resonances in the Schr6dinger equation, and relate these 
instabilities to the phenomena observed by Shelley. Finally we construct 
asymptotic solutions which reproduce long-time behavior seen in some of 
the numerical experiments of Shelley. Section 6 gives concluding remarks. 

2. THE FIXED O U P U T  P R O B L E M  

In this section we formulate a problem in nonlinear localization, 
adopting the approach taken by Devillard and Souillard. ~~ First, we 
review their results for the time-harmonic fixed output problem. Then, we 
describe some numerical solutions of this problem that display several 
interesting new features of nonlinear localization. 

Localization is very well understood for the linear case, (1"4-6) 

i~b, = --~x:,- + V(x,  o9) 

with V(x,  o9) random (the specific random potentials will be defined 
below). This problem can be understood by studying the time-independent 
spectral problem 

e~,= -~,xx + V(x, o9) r (1) 

It can be shown (4~ 6.5.7) that for almost every realization of the potential the 
eigenvalue problem Eq. (1) has 

(i) Only pure point spectrum. 

(ii) Exponentially decaying eigenfunctions. 

In a nonlinear problem it is not clear a priori what is meant by 
localization. Obviously a characterization in terms of the spectrum ceases 
to have any meaning in the nonlinear case, since superposition no longer 
holds. There are many possible ways to define nonlinear localization, but 
we follow the convention adopted by Devillard and Souillard. (~~ 
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Devillard and Souillard consider the time-harmonic scattering problem 

~(x, t) = exp(-ikZt) F(x)  
(2) 

k2F= --Fxx + V(x, co) r + fl ]FI2F 

where k 2 > Vmax. They take the random potential V(x, ~o) to be piecewise 
constant, with the length of each constant interval chosen from a Poisson 
distribution and the height chosen from a uniform distribution which is 
independent and identically distributed on each constant interval. The 
potential V is taken to consist of a finite number of such segments, so that 
V is compactly supported, say on [0; L]. The nonlinearity is also taken to 
be supported on [0, L]. Since the potential and nonlinearity are of 
compact support the solutions outside of [0, L] are plane waves: 

~9(x)~  T e x p ( i ( k x - k Z t ) ) + S e x p ( - i ( k x + k 2 t ) )  x > L  

tp(x) --. I exp( i (kx  - kZt)) + R exp( - i (kx + k2t)) x < O. 

The second-order ODE requires two boundary conditions to determine a 
solution. There are two distinct types of boundary value problems which 
are commonly studied: 

(i) Fixed Input I = 1, S = O. 

(ii) Fixed Output T =  1, S = O. 

The fixed input boundary value problem is the more physical, corre- 
sponding most closely to the intuitive picture of scattering. It amounts to 
sending in a plane wave of fixed intensity and observing what is reflected 
and what is transmitted. (This is the boundary value problem studied by 
Knapp, Papanicolaou, and WhiteJ TM tT)) This fixed input problem is a non- 
linear two-point boundary value problem that does not necessarily have a 
unique solution. This is expected, since even very simple boundary value 
problems can exhibit multi-stability and non-uniqueness of solutions. On 
the other hand, the fixed output problem is an initial value problem in x, 
and has a unique solution. This makes it a much easier problem to study 
both numerically and analytically. [This is the boundary value problem 
studied by Devillard and Souillard.] In either case, the transmission coef- 
ficient is defined as 

T 
t L ~ - -  

I 

The transmission coefficient is a function of L, the length of support of the 
disordered medium. Localization is taken to mean that tL ~ 0 as L ~ oo. 



1082 Bronski e t  al. 

The linear case--where the two boundary value problems are 
equivalent--can be treated by a transfer matrix formalism, ~19) from which 
it is well-known that the transmission coefficient decays exponentially: 

tL oc exp(-TL), L>> 1 

Here the inverse "localization length," ~, = 7(k), is a decay constant which 
depends on the random medium and the wavenumber k of the incident 
plane wave. 

In their study of the fixed output problem, Devillard and Souillard 
show that for the nonlinear problem, the transmission coefficient tc decays 
to 0 as L goes to infinity, establishing localization. They show further that 
in the cubic focusing case: 

tL >~CL -2, L>> I 

Thus, the decay is no fas ter  than algebraic, and certainly not exponential 
as in the linear case. Using a heuristic argument with supporting numerical 
evidence they suggest the improved estimate 

tL oc L l, L>>I 

Their approach is quite general, and extends to many different non- 
linearities. Further it is an analytical work and not, (for instance) pertur- 
bative, Their argument that the decay of tL is slower than exponential 
appears to hold only for a focusing nonlinearity. It is also important that, 
in the linear problem, a complete understanding of the time-harmonic 
eigenvalue problem leads, through the Fourier transform, to a complete 
understanding of the dynamic problem. As Devillard and Souillard point 
out this is no longer true in the nonlinear case, due to the failure of super- 
position, and that an understanding of the time-harmonic problem does 
not allow one to understand the dynamical problem. The time-harmonic 
problem says nothing, for example, about the rate of spreading of an 
initially localized wavepacket, nor does it address the question of the 
stability of the localized solutions which are constructed. 

To sharpen our understanding of the work of Devillard and Souillard, 
we have performed numerical experiments on the fixed output problem, 
Eq. (2). We begin by generating a random potential by the method out- 
lined in the next paragraph. We impose initial conditions at the edge of the 
medium, x = 500, corresponding to an outgoing plane wave. We then 
integrate the random, time-harmonic NLS equation back to the beginning 
of the medium, x = 0, using a standard fourth order Runge-Kutta scheme. 
We repeat this procedure for many (~4000) realizations of the random 
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potential V(x ,  e~), and calculate the average amplitude of the wave as a 
function of distance into the medium. The medium was (for each realiza- 
tion) discretized into 4096 points, giving A x  ~ . . .  12. 

The random potential V(x,  co) was generated in the following manner: 
At each spatial gridpoint a random value was chosen from a uniform dis- 
tribution to generate a very rough random potential--one with a correla- 
tion length on the grid scale. This rough potential was then smoothed by 
convolution with a smooth kernel s e c h ( x / x c )  to give a random potential 
with a characteristic correlation length x,.. The correlation length xc  of the 
random potential was 2, so that the disordered medium was approximately 
250 correlation lengths long. 

The incident wavenumber k and the maximum height of the random 
potential V were chosen to be unity, so that k 2 - V (x ) />  k 2 - 1/> 0. Thus 
there are no classically forbidden regions, and any observed decay of the 
solution is due to localization, rather than the exponential decay associated 
with tunnelling. For the nonlinear case the coefficient of the (focusing) 
nonlinearity was fl-- -0.25. 

It should also be pointed out that the arguments used by Devillard 
and Souillard to bound the decay rate of the transmission coefficient are 
quite robust, and are easily extended to (for instance) bounded random 
potentials, as we simulate here. Thus we felt justified in simulating a poten- 
tial which does not correspond exactly to the one chosen by Devillard and 
Souillard. In the linear case localization phenomena tend to be rather 
robust, and do not depend too much on the exact nature of the random 
potential, and thus it is hoped that the same hold true in the nonlinear 
problem. The numerics which follow tend to support this, as we observe 
numerically the same phenomena which were theoretically predicted and 
numerically verified by Devillard and Souillard. 

These experiments are summarized in Fig. la, b, which show the 
average wave amplitude as a function of distance into the medium, for both 
the linear and focusing nonlinear cases. There is a dramatic difference 
between the linear case, where we see exponential decay of the solution, 
and the nonlinear case, where we see a decay which is much slower. The 
linear case requires an incident wave of average amplitude roughly 900 to 
produce a transmitted wave of unit amplitude, while the nonlinear case 
requires an incident wave of amplitude roughly 1.8 to achieve the same 
transmission. This is a s tr ik ing  reduction in the reflectivity of the medium! 

It is also very interesting to examine, for the linear and nonlinear 
cases, the reflection coefficient (defined as rL = R / I )  as a function of the 
incident wavenumber k. (This experiment is, to our knowledge, new, 
and has not appeared in any previous work on random nonlinear media.) 
To this end we performed a series of numerical experiments for a single 
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Fig. 1. Average Amplitude of Wavefunction vs. Distance into the Medium. 

realization of the random potential, but for a range of incident wave- 
numbers. This was repeated for three different widths of the disordered 
medium (L=200,  400, 800). The results of these experiments are sum- 
marized in Figs. 2 and 3. In Fig. 2, the graphs on the left show rL as a 
function ~ of~k for the linear problem, while those on the right show rL for 
the nonlinear problem. It is apparent that in the nonlinear problem the 
chance of having a "resonant" transmission is much greater. This is seen in 
the enormous amount of small scale structure in the nonlinear reflection 
coefficient. In the case of small k, for instance, most of the medium is a 
classically forbidden region, and the wave function must tunnel through the 
medium. Thus the linear reflection coefficient is essentially unity, with a few 
isolated resonances where the reflection coefficient is less than one. The 
nonlinear reflection coefficient, on the other hand, shows an extremely 
large number of such resonances. 

There also appears to be a qualitative difference between the 
oscillatory structure of the linear and nonlinear reflection coefficients as a 
function of the wavenumber k. To see this difference, first consider Figs. 2e 
and f, which show dense oscillations for a medium of length L = 800, over 
a range in k from 0 to 4. Fig. 3 shows successively smaller details of 
Figs. 2e and f - - k e  [2, 2.25] and k e  [2.12, 2.13]. It becomes apparent that, 
when viewed on a scale where the linear reflection coeffficient appears 
smooth, the nonlinear reflection coefficient still remains very irregular and 
highly oscillatory (though with isolated, smooth "islands"). 

In general, we have observed that for small wavenumber k, the 
"islands" of smooth behavior in rL for the nonlinear problem are quite 
small and sparse, and wild fluctuations seem to be the norm. For larger 
k, r t  appears instead to be quite smooth, and looks very much like that 
for the linear problem under a slight shift in wavenumber. It isn't difficult 
to argue that for fixed L and large k, the reflection coefficient for the 
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nonlinear problem, r~ l should be related to the reflection coefficient for the 
linear problem, r l by L'  

I'Ll(k) ~ F / ( ( k  2 ~- IAI2) v2) 

where JAI is the amplitude of the incident plane wave. This is well supported 
by our numerical data. 

It is tempting to speculate that the wild behavior of the reflection 
coefficient in the fixed output problem is related to the nonuniqueness of 
solutions to the fixed input problem, ~1~) with those values of k for which 
the fixed output problem exhibits wild behavior corresponding to values of 
k for which the fixed input problem exhibits a large multiplicity of solu- 
tions. This would be an interesting area for a future study. 

3. P R E V I O U S  N U M E R I C A L  R E S U L T S  

In this section we summarize previous numerical results of Caputo, 
Newell, and Shelley ~9) and of Shelley ~8) on the fully time-dependent 
random NLS scattering problem. 
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These works consider the discrete random NLS equation 

i~bt= -(~k n+l - 2~k~ + ~b~-') + V~(~o)~,~+fl I~1 = ( ~ + '  _+_ ~ -  1) 

with absorbing boundary conditions and initial conditions corresponding 
to a plane wave incident from negative infinity. This particular discretiza- 
tion was chosen because it is completely integrable in the absence of an 
external potential3 e~ The incident wavenumber k was chosen so that the 
kinetic energy k2 is slightly larger than the maximum height of the random 
potential V n. This is physically the most interesting situation. The case 
where k 2 is very small corresponds to a case where classically there 
should be no transmission. In such a situation localization is somewhat 
uninteresting. On the other hand if the kinetic energy k 2 is much larger 
than the size of the random potential then one can only observe localiza- 
tion phenomena over large spatial scales, which makes the problem 
numerically difficult and computationally expensive. In short the interesting 
regime is the one where the kinetic energy of the incident plane wave, the 
height of the random potential and the size of the nonlinearity are all of 
comparable size, and all of these effects are important. 

The random potential was generated by the followhag algorithm. 
A random number was chosen at each site from a uniform distribution 
V, e [0, 1 ], producing a very rough random potential. This random poten- 
tial was then smoothed by convolving it with a smoothing function with 
some characteristic lengthscale, chosen to be large compared with the 
lattice spacing but small compared with the incident wave-length k-1. The 
absorbing boundary conditions were simulated by giving the potential a 
small negative imaginary part supported near the boundaries. This has the 
effect of causing exponential decay (in time) of waves near the boundaries. 
The ODE's themselves were integrated with a fourth order Runge-Kutta 
ODE solver. Some of Shelley's numerical results are summarized in 
Figs. 4-6. 

Figure 4 shows a single realization of the random potential, which was 
generated according to the above algorithm. Figs. 5a-c depict the long-time 
amplitude profiles for the linear, focusing, and defocusing problems. In 
each of these cases the absorbing layer is supported near the edges of the 
medium, from n = 0 to 50 and from n = 450 to 500. The nonlinearity and 
the random potential are supported from n = 100 to 400. In the region 
between the support of the random medium and the support of the 
absorbing layer the waves propagate freely (according to the linear 
Schr6dinger equation with no potential). 

Figure 5a shows the solution to the linear problem with a plane wave 
incident from left-hand edge of the medium, after a sufficiently long time 
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that initial transients have died away. At the left hand edge of the graph (in 
the absorbing layer) we see the incident plane wave, with amplitude 
[A[ ,.~ .04. In the region between n = 50 and 100, in the segment between the 
absorbing layer and the medium, the amplitude of the wavefunction 
oscillates between [A[ ~ 0  and [A[ ~0.08. These oscillations are due to 
interference between the incident plane wave and the reflected plane wave, 
which are of roughly the same amplitude, and indicates that nearly all of 
the incident beam is being reflected. Within the medium the amplitude 
decays in what seems to be an exponential fashion. This is the hallmark of 
linear localization. By averaging many realizations Shelley was able to 
observe a clear exponential decrease in the transmitted signal. In the far 
field, from n = 400 to 450 the amplitude is very small, indicating that very 
little of the incident beam is being transmitted. The transmitted beam is 
dissipated in the absorbing layer between n = 450 and 500. 

Figure 5b shows the long-time amplitude profile for the focusing 
problem, in the solid line, together with the background potential, in the 
dashed line. The amplitude profile for the problem with a focusing non- 
linearity appears markedly different from that of the linear problem. In the 
focusing case the profile is dominated by relatively large amplitude, narrow 
spikes which are bound to local minima of the background potential. The 
amplitudes of these soliton-like structures are far greater than the amplitude 
of the incident beam. Note in particular that this solution looks nothing like 
the time harmonic solutions shown in Fig. 1 of the previous section. Shelley 
also found the time spectrum to be extremely non-monochromatic, since 
each soliton has its own frequency of oscillation, thus violating the time har- 
monicity assumptions. These observations suggest that time-harmonic solu- 
tions are not those that are physically observed for the focusing nonlinearity. 

It is somewhat unclear how to interpret this result as localization, or 
lack thereof. The definition of localization in terms of the decay of the 
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transmission coefficient adopted by Devillard and Souillard is not applicable 
to this problem, since the long time state appears to have non-trivial dynami- 
cal behavior in time. The numerical evidence suggests that these bound 
solitons can arise at any distance into the medium, which in turn suggests 
that the long time state is not localized, since at long times there is field 
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supported arbitrarily deeply in the disordered media. However we stress 
that more numerics, as well as a definition of localization which applies to 
the fully time-dependent case, are necessary to fully resolve this question. 

The third and arguably the most interesting case is shown in Fig. 5c, 
which shows the long-time amplitude of the nonlinear defocusing problem, 
in the solid line, along with the background potential, drawn in the dashed 
line. This solution shows neither decay, as in the linear case, nor develop- 
ment of tightly localized structures, as in the focusing case. What is 
observed is that ]q;] 2 is spread rather uniformly throughout the support of 
the medium, and the amplitude within the medium is markedly greater 
than the input amplitude. Shelley observed that at long times the amplitude 
of the wavefunction fl 1012 satisfies the approximate equality 

j~ I01 z ( x )  ~ k  2 - g ( x )  

indicating a lack of localization. This approximate equality is evident in 
Fig. 5c. It is interesting to note that after an initial transient, the frequency 
settles down to being nearly monochromatic. This is apparent from Fig. 6, 
which shows the frequency spectrum (in time) of a point in the center of 
the slab. This spectrum has most of its energy in the incident frequency. 
Since Devillard and Souillard have shown that almost every time-harmonic 
solution of the fixed output problem is localized, it appears that the 
dynamics has acted to select an atypical delocalized time-harmonic solution. 

4. THE STABILITY OF T I M E - H A R M O N I C  SOLUTIONS 

We consider a random nonlinear medium as described by the random 
NLS equation 

iO, = --O.~ + V(x, co) qJ + fl I~12 ~ (3) 
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within the support of the medium, (xE [0, L]) ,  and the free Schr6dinger 
equation 

i~t = ~xx 

~ T e x p ( i k x )  x ~ - 0 o  

~ I e x p ( i k x ) + R e x p ( - i k x )  x - - , - - o o  

outside of the support of the medium. We recall from Section 2 that this 
equation supports time harmonic solutions ~ ( x , t ) = F ( x ) e x p ( - i k 2 t ) ,  
which satisfy the ODE 

k2F = - F x x  + V(x, co) r + fl IF[ 2 F 

Under fixed output boundary conditions, 

F' (L )  - i k r (L )  = 0 

the above ODE becomes an initial value problem in x. For the focusing 
nonlinearity, fl < 0, the solution to the above ODE exists and is unique. 
Introducing the energy H = 1/2(k 2 [FI 2 + [Fx]2 _ fl/2 [FI 4), which satisfies 
Hx = V(x, co)FFx, it is easy to show using positive definiteness of this 
energy, that 

H x = V(x, co) f frx 

]//x[ ~< [ k 11 IV(x, CO)[ [krF~] 

Since [ab[ <~ 1/2(a 2 + b 2) this gives 

[Hx[ <~ 1/2 [k- ~[ [ V(x, co)[ (k 2 IF] ~ + [Fx[ 2) ~ 1/2 ] V(x, co)[ [HI 

Therefore H, and thus F and Fx, are bounded if V is a function which is 
absolutely integrable. This is similar to the argument used by Devillard and 
Souillard to bound the growth rates of F, and thus derive a bound on the 
decay of the transmission coefficient. 

However for the defocusing case, fl > 0, the solution may develop poles 
at finite values of x. This is easiest to see by considering the case k = 0, 
V(x, co) = 0. The resulting ODE is then given by 

F~x= IFI2 F 

which has the exact solution F ( x ) = ( 2 )  1/3 ( X - X o )  i. For the defocusing 
case the energy H is unbounded below, and the bounds sketched above 
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collapse. For this reason it is necessary to consider nonlinearities which are 
more regular. Throughout this paper we consider the defocusing non- 
linearity 

N(F) =fl IFI 2 F(1 +fl  IF[2) - '  

The energy associated with this nonlinearity is bounded below. 
It was shown by Devillard and Souillard that solutions to this ODE 

(under fixed output boundary conditions) are algebraically localized. The 
numerical solutions presented in the previous section, on the other hand, 
suggest that solutions of the fully time-dependent problem do not exhibit 
localization. These two observations, taken together, suggest that time- 
harmonic solutions to the random NLS are unstable, and thus are unlikely 
to actually be observed. This is further supported by the fact that in the 
absence of a potential the time-harmonic plane-wave solutions of focusing 
NLS are known to be unstable. 

For these reasons we consider the stability of time-harmonic solutions 
to linear perturbation. In this section we derive bounds on the possible 
location of any unstable eigenvalues. Though these analytical bounds admit 
the possibility of instabilities, they do not establish their existence. In 
Section5 we compute the time-harmonic soultions numerically, and 
establish the existence of instabilities with specific algorithms discussed in 
Section 5. 

Let F denote a fixed time-harmonic solution, and introduce a small 
perturbation r defined by 

~(x, t )=  exp(-ikZt)[F(x) + er t)] 

Substituting into Eq. (3), and collecting leading order terms in e gives the 
following linearized equations for r and r 

ir + k2r = - r  V(x)r IFI2r 

- i r  + k2r -r + V(x) r 2fl IFI 2 0~+ flff2r 
(4) 

This definition for r is convenient because the resulting linearized equa- 
tions do not explicitly involve time. Rewriting in terms of the "sideband" 
variables f and g, defined by 

r = f(x) exp(- iEt )  + g(x) exp(iEt), 
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the stability problem becomes 

Ef  = - k 2 f  - f~x + V(x) f + 2fl IF[2 f + flFZg 

- E g =  - k Z g -  gxx + V(x) g + 2fl [Fl2 g + flF2f 
(5) 

This is an eigenvalue problem for (E, f, g), where instability corresponds to 
Im(E) > 0. The allowable perturbations are those which do not change the 
asymptotic boundary conditions, and thus we only consider perturbations 
which are decaying at spatial infinity. This amounts to considering the 
above equation with L2 boundary conditions. 

Since we are interested in instability we need consider only eigenvalues 
with Im(E)>0. Further we need only consider eigenvalues with positive 
real part since the above eigenvalue problem is invariant under the trans- 
formation 

f ( x )  --* ~(x) 

g(x) ~ f ( x )  

E ~  - E  

The eigenvalue problem (5) is a pair of Schr6dinger equations with a 
nonself-adjoint coupling. In the absence of this coupling, the equations 
reduce to 

Ef  = - k 2 f  - f~x + V(x) f + 2fl IFl2f 

- E g =  - k 2 g -  gxx + V(x) g + 2fl [FlZg 

whose spectrum is easily understood. The spectrum o f f  consists of: 

(6) 

(i) Continuous spectrum for E ~> - k  2. 

(ii) A finite number of bound states in - k 2 + ( V + 2 f l  [FI2)min~< 
E~< - k  2. 

The spectrum of g is the mirror image of that off,  namely: 

(i) Continuous spectrum for E ~< k 2. 

(ii) A finite number of bound states in k2- (V+2f l lF l2 )mi .~  
E >~ k 2, 

(See Fig. 7) 
The uncoupled problem has no instabilities (complex eigenvalues) 

since it is self-adjoint. Any instabilities must arise as a result of the non-self- 
adjoint coupling. We can bound both the magnitude of the imaginary part 

822/88/5-6-7 
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of the eigenvalues, and the real part of those eigenvalues which have a non- 
vanishing imaginary part. The spectrum of the eigenvalue problem given in 
Eq. (5) is characterized in the following theorem. 

Theorem. The eigenvalue problem defined by Eq.(5) has the 
following properties: 

(i) It is invariant under the transformation (E, f, g) ~ ( - E ,  g, f ) .  

(ii) The continuous spectrum O'cont" is the entire real axis. 

(iii) The complex eigenvalues lie in a bounded region D of the 
complex plane, shown schematically in Fig. 8. 

A 
I 

�9 I .  . glon of Pos~llble Elgenva 

V 

- - >  

Fig. 8. Stability Boundaries in the E-plane for the Coupled Problem. 
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Proof, Item (i) is a simple calculation. Item (ii) follows from the 
Weyl theorem, which states that if A is self-adjoint and B is compact then 
a ~ ( A )  = a~ss(A +B).  Then taking B to be the coupling and A to be the 
uncoupled Schr6dinger equation (6) proves item (ii). The third statement 
requires slightly more work to prove. Assume E has a non-zero complex 
part. Manipulating the f, g equations gives the following expression for 
gimag ; 

2igimag Ilfll ~ = f flF2gf - f l F g f  = 2igimag II gll 

Since Eimag 5~0 by hypothesis, we conclude that Jlfll2= Ilgl[~. We hence- 
2 = I. Applying the Cauchy-Schwarz inequality forth assume that Itftl @ = I1 gll 2 

gives 

2 ]Eimag[ Ilfl12 2 

42  f [flF 2 Ilfll g[ dx<~2 IlflF211~ Ilflt2 Ilgl12 or  [Eimag ] ~ Ilflf2ll~ 

which bounds E in the infinite strip of width tlflF21]oo. The real part of E 
satisfies 

Ereal llfll22= - k 2  Ilftl 2+ IIf~ II 2+ <f l  V(x)If> 

+ 2 < f l  flF 2 If> + �89 fl F2 Ig> + �89 tiff2 If> 

where <f l  H Ig> = ~ fHg dx. Our goal is to bound Ereat from below. This, 
combined with the above estimate, will place the eigenvalues in a half- 
infinite strip. Finally the reflection symmetry we showed earlier in the 
section guarantees that the off axis eigenvalues lie in the intersection of the 
half-infinite strip and its reflection which is, of course, a rectangle. 

For convenience we define I = ~ F2fg dx. Then the expression for Ereat 
becomes 

Ere,, = - k  2 + IIf~ II 2 + f Ifl 2 (V(x) + 21/IFI 2) dx + fllreal 

We have the following elementary inequalities: 

IIf~ II ~/> 0 

f V(x) If]2dx >1 Vmin 
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I/?F2lmax~f/? Ifl = IFI2~ I/?F2lmin /?>0 

-I/?F2lmm ~> f/? Ifl 2 IFI2> - I/?F2l,.a~ /?<0 

It follows from these elementary inequalities that 

Ereal ~ - k 2 +  Vmin-[-2 [/?F2lmin--]-~Ireal /?)0 

greal ~ - k 2 +  Vmin- 2 [/?F2[max--]-/?Ireal /?<0 

The value of/real is trivially bounded by 

Therefore, 

/?/real >~ --I/?II > - f I/?fgF2l > --[/?FZlmax 

Erea, ~ - k 2  ---[ - Vmin -1- 2 IflF2[min - I/?F2lmax 

Ereal ~ - k  2 + Vmi n - -  3 ]/?FZlmax 

By the reflection symmetry shown earlier, or by 
arguments to the equation for g, we find that 

f l>O 

/?<o 

applying 

Ereal ~ k  2 -  Vmin-2 [/?F2lmi, + I/?F2lmax /?>0 

Ereal ~<k 2 -  Vmin + 3 [/?F2lmax /?<0 

This gives us the rectangular bound shown in Fig. 8. 

Bronski e t  al.  

the same 

Erea, ~ > -k2-k - Vmin + 2/? IFl'~min+/?Ireal / ? > 0  

Ereal ~ - k 2 + Vmi. + 2/? 2 IF[ max + fllrea, /? < 0 

Eimag : fl/imag 

This bound can be improved somewhat. In deriving this bound we 
have bounded the real and the imaginary parts of I--  I FZfg separately by 

[FZfg- Fzf~]. If we denote the real part of I by /rea~ and the imaginary 
part of I by Iim~g, then the above arguments give 
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We then use the complex Cauchy-Schwartz inequality on I 

I= f FZfg dx 

I11 ~ IIF211~ f If~l dx <~ IIF211~ 

2 2 2 
(/real "~< IIg21t +/rea l )  co 

It is straightforward to check that the set of points satisfying the following 
inequalities 

2 (Irea, + IZmag) 1/2 ~ IIF2II 

Eimag ~ j~Iimag 

greal ~ - k 2 +  Vmin + 2 fl IFI 2 min + ]fl[ /real 

Ere,, ~> - k 2 +  Vmi, + 2 fl IF] 2 ]fl[ Ire,L 
m a x  - -  

f l>0  

/~<0 

together with reflection symmetry is the region depicted in Fig. 8, a pill 
shaped region made up of a rectangle together with hemicircular caps on 
the ends. This result is similar to the Howard semicircle theorem t21) and its 
various refinements, from the theory of hydrodynamic stability. 

Using a result of Pego and Weinstein, ~22) we can also bound the 
number of unstable eigenvalues in the special case where the medium is not 
compactly supported. 

Theorem (Pego and Weinstein). Given an eigenvalue problem 
of the form 

HIH2r =2~ 

with H i self-adjoint, the number of eigenvalues in the upper half plane 
Nunstable satisfies the inequality 

Nunstable ~ dnd 

where dnd is the dimension of the negative definite subspace of H; (i = 1 
or 2). 

For eigenvalue problem (5) the factorization is accomplished through 
the choice 
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o) 
1t2= -0~ + ( v(x) + 2fl ]FI 2 (x) - k  2 flFZ(x) "~ 

flff2(x) V(x) + 2fl IF] 2 (x) - k 2 J  

This implies that the number of unstable eigenvalue is less or equal to the 
dimension of the negative definite subspace of H 2. We can make this 
bound more explicit as follows: Introduce the scalar operators H_+ defined 
as 

H = - O ~ x - k 2 +  V(x) +fl IFI 2 

H+ = - 0 , . x - k 2  + V(x)+3fl [FI 2 

It is easy to verify that H _  ~<H2~<H+ for f l>0 ,  with the inequality 
running in the opposite direction for fl < 0. This implies that for fl > 0 
(fl < 0) the dimension of the negative definite subspace of H2 is less than 
the dimension of the negative definite subspace of H (H+).  But H_+ is just 
a Schr6dinger operator, and we can use any of the well known bounds on 
the number of bound state eigenvalues for Schr6dinger operators. 123) In 
particular in the defocusing case when 

fl IFI2 >~ k 2 -  V(x) 

the operator H _  is positive definite, implying that //2 is positive definite, 
and thus that there are no instabilities. In the case where the medium is of 
compact support this condition cannot hold everywhere since fl and V(x) 
vanish outside of the medium. Nonetheless this is interesting in light of 
Shelley's observation, namely that the solution evolves so that 

f l  I F I  ~ ~ k 2 - V(x) 

and the above condition is approximately satisfied within the support of 
the slab. In the focusing case ( f l<0 )  the IF[ 2 term in H+ is negative 
definite, and the only obvious sufficient condition which will guarantee 
stability is to demand that 

3fl IFl2•k 2 -  V(x) 

In particular this means that k 2 -  V~< 0, SO that the solution is always in 
a classically forbidden situation. Thus it is somewhat uninteresting from the 
point of view of localization. 



Stability of Time-Harmonic Disordered States 1099 

5. N U M E R I C A L  SOLUTION OF THE EIGENVALUE PROBLEM 

In the previous section we were able to bound the region of possible 
instability in the complex eigenvalue plane, but were unable to establish the 
existence of such unstable eigenvalues analytically. We resort to direct 
numerical simulation to demonstrate the instability of time-harmonic 
solutions. 

Recall that the linearized eigenvalue problem is given by 

E f  = - k Z f  - f~x + V(x)  f +  2fl [Fl2 f + flF2g 

- E g =  - k Z g -  gxx + V(x)  g + Zfl [F[Z g + f lF2f  

subject to L 2 boundary conditions. When V(x), the potential, and fl, 
the nonlinearity are both taken to be of compact support then the L 2 

boundary conditions are equivalent to imposing the following boundary 
conditions imposed on the edge of the support: 

fx(O) + i(k 2 + E)l/z f ( o )  = 0 
(7) 

gx(O) -- i(k 2 - E) 1/2 g(O) = 0 

f x ( L )  - i(k 2 + E)'/Z f ( L )  = 0 

gx(L)  + i(k 2 - E)1/2 g(L)  = 0 
(8) 

These boundary conditions ensure that the free waves outside of the 
support of the medium decay as x ~ _+ oo. 

We first construct F, the solution to the fixed output problem, by the 
numerical method outlined in Sect. 2. We then find the spectrum of the 
linearized problem about F in the following way: Given E ~ C  (not 
necessarily an eigenvalue), we use condition (7) to fix initial conditions on 
fx(0) and gx(0) in terms off(0)  and g(0) respectively. We then integrate 
across the medium to x--L.  When we impose the correct boundary 
conditions at x = L we get an equation of the form 

A(f(O), g ( O ) ) ~ -  - o 

where A = A(E, L) is a 2 x 2 matrix. Thus, T(E) = det A is zero if and only 
if E is an eigenvalue of the linearized system. Thus the eigenvalues are 
computed as zeroes of the (analytic) function T(E). 

T(E)  is expensive to compute since it requires the solution of an 
ordinary differential equation for  each value o f  E~ C. Moreover it is not 
known a priori where these eigenvalues lie in the complex plane, except 
that they must satisfy the bounds derived in the previous section. For these 
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reasons we have found that iterative methods, such as Newton-Raphson, 
are too expensive to be practical, especially if we are interested in getting 
averaged information over many realizations of the random potential. We 
use instead a method based on Rouch~s theorem from complex analysis, 
which says that given f, an analytic function of a complex variable, and F, 
a region of the complex plane, then 

for ~ dz = 2gi(N- P) 

where N is the number of zeroes o f f  which lie inside the region F, P is the 
number of poles of f which lie in the interior of this region, and OF denotes 
the boundary of F. To compute the zeroes of T(E), we partition the 
complex E plane into a number of rectangles Fg, j, and calculate 

1 I~ T'(E) 
2g---f r,,j T(E) dE 

for each region Fi. j. Since T(E) is entire, the contour integral counts only 
the number of zeros. This numerical procedure to calculated the location of 
eigenvalues is similar to a method used by Overman and McLaughlin ~24-26) 
in their work on the spectrum of the scattering problem associated to the 
Sine-Gordon equation. 

This method counts the number of eigenvalues (including multi- 
plicities) in a region of the complex plane for a fixed realization. To 
calculate the density of eigenvalues in the complex plane, we simply 
repeat the above process for a large number of realizations, with a fixed 
rectangulation of the complex plane, and keep a tally of the number of 
eigenvalues in each rectangle. 

Our implementation of this method suffers from loss of accuracy when 
a zero of T(E) lies very near a contour 0Fi, j, itself represented by a fixed 
number of grid points. In this case the integrand varies too rapidly on that 
portion of the contour for resolution by the fixed grid. The net effect is that 
when an eigenvalue lies near the boundary of one of the rectangles, it is 
possible for the algorithm to either miss an eigenvalue, or misplace an 
eigenvalue into an adjacent rectangle. To bench-mark the algorithm we 
conducted the following numerical experiment: We applied the algorithm 
to the linear function f(z, co) = z -  o9, where co is a complex valued random 
variable distributed uniformly in [ -  1, 1 ] x [ -  1, 1 ]. By averaging over 
many realizations (10,000) of the random variable we were able to com- 
pute the frequency with which the algorithm missed or misplaced an eigen- 
value. We found that with thirteen grid-points on each side of the rectangle 
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the method missed the root entirely in roughly 5 percent of the trials, and 
incorrectly concluded that the root lay in an adjacent rectangle in roughly 
1 percent of the trials. With twenty-seven grid-points on each side of the 
rectangle these errors occurred in roughly 2.5 and 0.5 percent of the trials 
respectively. It is worth noting that while the algorithm may occasionally 
misplace an eigenvalue which lies near to the contour of integration it 
appears to rarely find spurious eigenvalues. 

5.1. Focusing Results 

We have used this method to calculate the density of eigenvalues of 
the linearized focusing NLS eigenvalue problem. Some typical results of 
these experiments are shown in Fig. 9. These gray scale plots show the 
density of eigenvalues in the complex E plane, with white representing a 
large probability density and black a low probability density. These den- 
sities are based on 200 realizations of the random potential. The real axis 
goes from - 8  to 8 and the imaginary axis from 0.1 to 2. This region has 
been subdivided into an 81 x 41 grid. The left-hand plots show the density 
of eigenvalues in the complex plane for random potentials of amplitude 1.0, 
2.0, and 3.0 with incident wavenumber k = 0. The right-hand plots show 
the density for potentials of amplitude 1.0, 2.0 and 3.0 and incident 
wavenumber k = 1. In all cases the random potential is of length 25, a 
correlation length of 2, and fl = -1.0. There are several general features: 
The first is that the eigenvalue problem has generically many complex 
eigenvalues, indicating that the time harmonic solutions are typically 
unstable. Secondly, as we would expect, the eigenvalue problems with a 
random potential of larger amplitude show a greater spread in the distribu- 
tion of the eigenvalues. And thirdly, there is an eigenvalue "spine" along 
the imaginary axis, which seems to be a common feature of all the spectra. 

This spine is associated with the familiar modulational instability. In 
the case where the support of the nonlinearity is the whole line, and where 
there is no random potential, there is a family of time harmonic plane-wave 
solutions to the focusing NLS. These plane wave solutions are always 
unstable, and the unstable spectrum consists of a spine along the imaginary 
axis whose height is proportional to the amplitude of the plane wave. This 
feature seems to persist even in the presence of disorder, with the height of 
the spine growing with the amplitude of the random potential. It has been 
observed previously that disorder enhances the modulational instability, t14) 
The heuristic reason is clear. In the fixed output problem the solutions 
grow as we integrate back across the support of the disordered medium. 
More disorder means the solutions grow faster. This means that at the 
front of the medium the solutions look like plane waves with comparatively 
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Fig. 9. Distribution of Eigenvalues--Focusing Case. 
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larger amplitudes, and thus the height of the spine of "modulational 
instability" should be comparatively larger. 

5.2. Defocusing Results 

Time-harmonic solutions of the cubic defocusing NLS equation, 

k2F = -Fxx + fl IFI2 F +  V(x, ~) F 

are badly behaved, and can develop singularities for finite values of x. For 
this reason we choose to study the time-harmonic solutions of the saturable 
defocusing NLS, 

F 
kZF =-F~x  l+ f l l  I 'F ' 2+V(x '~ )F  (9) 

For small values of [F[, this equation behaves to leading order like the 
cubic defocusing NLS equation, but in this saturated case solutions exist 
for all x. We solve the associated linearized stability problem, 

E f =  - k Z f  + f~x + V(x, o~)f+ 

- E g =  -k2g + gxx + V(x, ~) g+ 

f flF 2 
(1 +fl  IF[2) 2 ~ g (1 +fl  [FI2) 2 

g ~ 2  

(1 +fl  [FlZ)z+f(1 +fl  IFI2) 2 

(lO) 

as we did in the previous section. The length of the random medium was 
taken to be 50, and the correlation length of the potential was 2, so that 
the random medium was roughly 25 correlation lengths long. The incident 
wavenumber k was again taken to be 0 or 1, the amplitude of the random 
potential was taken to be 1.0, 2.0 or 3.0, and now fl = 1.0. The results 
of these experiments are shown in Fig. 10. The region shown is 
[ -0 .125,  0.125] x [0.01, 0.15], subdivided into a 41 • array of rec- 
tangles. [ Note that this region of the complex plane is significantly smaller 
than that shown for the focusing case.] 

Again we find that the time-harmonic solutions to this defocusing 
NLS equation are often unstable. This instability is not present in the 
absence of the potential, or in the absence of nonlinearity, and is there- 
fore a result of the interaction of nonlinearity and randomness. In contrast, 
the focusing problem exhibits instability even in the absence of the 
random potential, and thus the instabilities present there are somewhat 
less surprising. It is important to note that for the parameters we have 
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Fig. 10. Distribution of Eigenvalues--Defocusing Case. 
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examined, there are significantly fewer unstable eigenvalues in the defocus- 
ing ease than in the focusing case. The average number of unstable eigen- 
values in the defocusing case is roughly 0.3-0.5, while in the focusing case 
the average number of unstable eigenvalues is of the order of 10. In fact the 
instabilities for the defocusing case disappear completely for weak random 
potentials (potentials of small amplitude or small support). This is unsur- 
prising, since it is known that the plane wave solutions to the defocusing 
NLS are stable in the absence of a potential. It is also worth noting that 
most of the spectrum in the defocusing case seems to be confined almost 
entirely to the imaginary axis. We believe that this is simply a result of the 
small number of eigenvalues, coupled with the symmetry of the problem. 
There are, on average, fewer than one eigenvalue per realization in the 
defocusing case. A single eigenvalue, by symmetry, must be purely 
imaginary. We expect, based on our numerical experiments, that potentials 
of larger support would have correspondingly more unstable eigenvalues, 
and more eigenvalues which lie off of the imaginary axis. We have done 
some testing of this hypothesis with a modification of the code described 
above which simply counts the number of unstable eigenvalues. The results 
of some experiments run using this code are illustrated in Fig. 11, which 
depicts the average number of unstable eigenvalues (based on 200 realiza- 
tions of the random potential) as a function of the support of the length of 
the disordered medium. The average number of unstable eigenvalues is seen 
to grow with the length of the disordered medium. Intuitive arguments 
suggest that the number of eigenvalues should grow linearly with the length 
of the medium, which appears consistent with the graph in Fig. 11. 

We also note that while there is a spine of spectrum in both the 
defocusing and the focusing cases, there are qualitative differences. In the 
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Fig. 11. Average Number of Eigenvalues vs. Length of Medium. 
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focusing case the height of this spine is observed to grow linearly with 
the amplitude of the random potential, while in the defocusing case, the 
height of this spine appears to be largely independent of this amplitude. 

Finally, we would like to mention the bounds derived in the previous 
section. We have not included these bounds in the previous graphs, since 
they depend on the time-harmonic solution F, and so are realization 
dependent. However for a single realization it is easy to verify that all of 
the eigenvalues we find lie within these bounds. In the defocusing case in 
particular these bounds appear to be far from tight. This is to be expected 
since in the case where the random potential vanishes there are no 
instabilities, but the bounds we derived do not generally vanish. 

5.3. Resonances and Instabilities 

It is not difficult to understand heuristically the origin of unstable 
eigenvalues. As we remarked earlier, the eigenvalue problem in Eq. (5) 
looks very similar to the pair of second order Schr6dinger eigenvalue 
problems given by 

Ef  = - k 2 f  - f~x + V(x) f + 2fl IFI2 f 

- E g =  - k 2 g -  gxx + V(x) g + 2fl IF]2g 
(11) 

but is complicated by the presence of a skew-adjoint coupling. It is 
convenient to introduce an artificial coupling constant 2 for the non-self- 
adjoint part of the eigenvalue problem 

Ef  = - k 2 f  - f~x + V(x) f + 2fl IFI 2 f  + 2flFZg 

- E g =  - k 2 g -  gxx + V(x) g + 2fl IFI2 g + 2pFzf 
(12) 

Again, when 2 = 0 the eigenvalue problem is self-adjoint and the spectrum 
is as given before--the entire real axis is continuous spectrum, of multi- 
plicity two in ( - ~ , - k )  ~ (k, ~ )  and multiplicity 4 in I--k, k]. Also there 
is the possibility of having imbedded eigenvalues in (- o% -k)  w (k, ~) .  

It is obvious that any eigenvalues of the 2 = 0 problem can potentially 
move into the complex plane as the coupling is increased, and become 
unstable eigenvalues. What is not so obvious is that there are eigenvalues 
in the finite 2 case which do not correspond to any eigenvalues in the 2 = 0 
case, but instead arise from resonances, or second sheet poles, of the resol- 
vent operator in the 2 = 0 problem. This sort of "bifurcation" is unique to 
infinite dimensional problems, since in finite dimensional systems the 
analytic continuation of an eigenvalue is itself an eigenvalue. (Similar 
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mechanisms for the onset of instability have been observed, for example, by 
Pego and Weinstein in the study of the stability of travelling wave solutions 
to the generalized KdV equation, ~22) and by Bourlioux, Majda, and 
Roytburd ~27) in the study of combustion.) 

We have numerically documented these resonances crossing the 
branch cut on the real axis, and becoming eigenvalues as the coupling 
constant 2 is varied. We used a standard shooting method to find a single 
unstable eigenvalue. The value of the coupling was decreased, and the 
eigenvalue calculated again using the old eigenvalue/eigenvector as the 
initial guess for the shooting method. Convergence of the shooting method 
was rapid, since only small changes were made in the coupling constant. 
These experiments were run with a piecewise constant potential, like that 
considered by Devillard and Souillard. 

Figure 12 illustrates the path of a single eigenvalue of the focusing 
problem as the coupling constant 2 is varied between 0 and 1. That end of 
the path which lies below the real axis, where the "eigenvalue" is actually 
a resonance, corresponds to 2 = 0, while that end which lies above the real 
axis, where the eigenvalue is a true eigenvalue, corresponds to 2 = 1. 

Figure 13 shows the f and g eigenfunctions for the fully coupled case, 
and the effective potential V(x)+2fllFI 2 of the uncoupled problem. 
Generically one member of the (f, g) pair has most of its mass supported 
near a well of the effective potential V(x)+ 2fl IF[ 2 (x). This is consistent 
with the interpretation of these complex eigenvalues as being connected 
with the phenomena of resonance. Since the spectrum in the 2 = 0 case is 
the union of the f spectrum and the g spectrum these resonance poles are 
generically associated with either f o r  g. In the case shown in Fig. 13, g (the 

i , , , ~ , , , I ' , 

21. ' 210 218 
IEigenvalue Track 

Fig. 12. Eigenvalue Path in Complex Plane for 2 ~ [0, 1 ]. 
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middle graph) happens to be the resonant member of the pair. There is an 
second eigenvalue at - /~  where f is the resonant member of the pair. Also 
note that within the medium the amplitude of g, the resonant member of 
the pair, is much greater than the amplitude o f f  (the upper graph), the 
nonresonant member of the pair. 

This interpretation of the nature of the instabilities of the time- 
harmonic solutions of the random NLS equation suggests a heuristic inter- 
pretation of the numerical observations of Shelley. The instabilities are 
associated with resonances of a scattering problem with effective potential 
V(x) + 2fl IF[ 2 (x). These resonant eigenfunctions are supported near local 
minima of the effective potential V(x)+ 2fl IFI 2 (x). The instability causes 
growth of the unstable modes. In the focusing case (f l<0)  this growth 
causes the minima to become deeper. This causes a greater instability, 
which causes the minima to become deeper still. This process continues 
until the effects of diffraction become important. In the defocusing case, the 
initial instability causes growth in the solution, which is supported near 
local minima of the effective potential V(x)+2p IFI 2 (x). However, the 
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evolution proceeds very differently than in the focusing case. Growth in the 
solution near a local minima causes the minima to become less deep. This 
causes less instability. Thus the effect of the instability in the defocusing 
case is to fill in the minima and eliminate the source of the instability. 

6. A S Y M  PTOTICS  

In their numerical simulations, Shelley, Caputo, and Newell, t9) and 
Shelley ~8) observed that at long times the focusing case tended to look like 
a large number of solitons bound to local minima of the potential, while in 
the defocusing case Shelley t 18) observed that the wavefunction was "slaved" 
to the effective potential. It is interesting to ask whether it is possible to 
construct solutions of the NLS in the presence of a potential which at least 
approximately match these observations. In this section we discuss such 
constructions. 

There are a number of papers which construct solutions to the focusing 
NLS equation in the semiclassical limit (limit of small dispersion) in the 
presence of a potential. These solutions consist of solitons which are bound 
to critical points of the potential. [Note that these critical points may be 
maxima or minima. ] The most general construction is due to Oh. t28) Given 
a potential with N critical points he is able to construct 2 u solutions, 
corresponding to the presence or absence of a soliton at each critical point. 
More details can be found in Refs. (29, 28, 30). 

The observed defocusing solution, fl ]F12~ k 2 -  V(x), is obviously not 
an exact solution of the defocusing random NLS equation, but can be 
found asymptotically as a solution in the semi-classical limit of large 
incident wavenumber or (equivalently) slowly varying V(x). This is seen 
most easily by introducing the formal expansion parameter 

i~ ,  = -~2~xx + V(x) ~ + p I~l z 

where the limit e ~ 0 corresponds to k ~ ~ .  Making the geometrical optics 
Ansatz 

~9 = A(x, t) exp(iS(x, t)/e) 

and collecting powers of e, gives the eikonal and transport equations 

- s ,  = S~x + V(x) + pA 2 

A~ = 2SxA~ + SxxA 

822/88/5-6-8 
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The first of these equations (eikonal) involves both the amplitude and the 
phase because of the strongly nonlinear character of the problem. (In semi- 
classical theory of the linear Schr6dinger equation, the eikonal equation 
involves only the phase.) The second equation (transport) is identical in 
the linear and nonlinear cases, as can be seen by the lack of explicit fl 
dependence. In general these equations exhibit all of the phenomena 
associated with nonlinear hyperbolic systems (shock formation, caustics, 
etc.) and are extremely difficult to solve. However since we are interested 
in monochromatic solutions, we can further require that 

St = - k  2 

A,=O 

which gives us the two relations 

2 _ k  2 V _ f l A  2 (13) S 
x - -  - -  

Sx~, = _ 2 A___~ (14) 
Sx A 

The eikonal relationship ( S 2 = k 2 -  V - f l A  2) basically represents conserva- 
tion of energy in the semi-classical picture. The kinetic energy S 2 is equal 
to the total energy k 2 minus the potential energy. The potential energy is 
in two parts. The first part V(x)  is due to the external potential, while the 
second part is due to the nonlinear self-interaction flA 2. 

The transport equation (14) can be integrated to obtain 

C s  

Sx---AT, or A - S , ~ 2  (15) 

Comment:  The same transport equation arises in classical WKB 
theory, where the WKB solution of the linear problem is given by 

~wKs _ exp(iS(x,  t)/e) 
l i n e a r  - -  

2 _ k  ~ V(x) S X - -  - -  

This is not surprising since the transport equation represents a semi- 
classical conservation of particle number in the same way that the eikonal 
equation represents a conservation of energy. The derivative of phase Sx 
represents a local particle velocity in the semiclassical picture. In order that 
the flux of particles through the point x remains constant, it is necessary 
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Fig. 14. The subcritical, critical, and supercritical values of c*. 

to require that the density of particles at x must be proportional to S~ -1. 
Since the particle density is given by p = [~k[ 2 it follows that the amplitude 
must be proportional to S ;  1/2. This conservation of particle number is 
clearly unaffected by the self-interaction represented by the nonlinearity 

The transport equation (15) can be used to eliminate the phase from 
Eq. (13), and we are left with an algebraic equation which depends upon 
a constant of integration c: 

f l A  6 + c 2 - (k 2 - V(x))  A 4 = 0 (16) 

This polynomial has four real roots and two imaginary roots when 

kz-v(x)>~3(~) 2/3 (17) 

and 6 complex roots when this condition is violated. The easiest way to see 
this is to look at the equivalent equation 

C 2 
k2-  V=py + f(y) 

where y = [A[ 2. For  y > 0 the function f ( y )  is positive with a local minima 
at Y0 = (2c2/fl) 1/3, f (Yo )  = 3(flc/2) 2/3. If k 2 - V(x) <~ 3(flc/2) 2/3 then the only 
real root occurs for y <0 ,  corresponding to imaginary A. In the case 
k 2 -  V(x)<~ 3(flc/2) 2/3 there are two positive roots and one negative root 
for y, corresponding to four real roots and two imaginary roots for [A[. 
This is illustrated in Fig. 14. 

It is useful to examine the limiting cases fl ~ 0 and fl -~ o% and to note 
a few properties. In the first case, for 0 < fl ~ 1, we find that 

A cl/2(k 2 - V(x ) ) - l /4  + O(p )  
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while for fl > 1 we find 

k 2-  V(x) 
A 2 ~ I- O(j~ -2) 

Note that A2= k 2 -  V(x)/fl is exactly a root when c = 0. These two limits 
represent the two branches of solutions to Eq. (16). In the limiting case 

,~ 0 the smaller root persists while the larger root moves off towards 
infinity. In the other limiting case, fl >> 1 the smaller root moves towards 
x = 0 while the larger root stays fixed. Thus the inner branch, which has 
smaller amplitude, is in some sense a "near-linear" solution while the outer 
branch is a strongly nonlinear solution. We suspect (but have no rigorous 
proof) that the outer branch--Shelley's observed asymptotic time-har- 
monic solution--is dynamically stable while the inner branch is not. 

Physically the constant c represents the momentum of the wave 
inside the medium, and condition (17) simply says that in order to support 
propagating solutions the wave must have sufficient energy to overcome 
the potential barrier. In fact when fl=O, Eq.(17) is simply the (semi-) 
classical condition k 2 -  V(x) > 0. Thus Eq. (17) should be thought of as an 
extension of this result to the nonlinear case 

It is also worth noticing that, given Ac(x), a root of Eq. (16) for a 
given value of the integration constant c, we have 

and in particular 

Icl < [c'l ~ A ~ ( x ) > A , . , ( x )  

~A~(x)  ~ k ~ - V(x)  

with equality iff c = 0. In Section 4, we found the sufficient condition for 
stability of a time-harmonic solution: 

p iFi2>k 2-  V(x) 

This condition is violated by every solution with c r 0. It seems plausible 
then that most of these solutions are unstable and are not observable in 
practice. Since this condition has only been shown to be sufficient, and not 
necessary, we have as yet no proof of this expectation. 

7. CONCLUSION 

We have studied the NLS equation with a random potential. Our 
methods have been primarily numerical, but with some use of mathe- 
matical and asymptotic analysis. Our primary goal is to understand the 
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competition between nonlinearity and randomness in regard to the striking 
physical phenomenum of "localization". 

The problem which we are primarily interested in is the time-dependent 
scattering problem, where we consider the long time state of a plane wave 
incident on a disordered medium. In contrast Devillard and Souillard <1~ 
and Papanicolaou et  al. <11"17) studied the time-independent scattering 
problem in the fixed output and fixed input formulations, and Fr6hlich, 
Spencer and Wayne <13) studied the time-dependent initial value problem. 
Note that in the absence of nonlinearity these problems are all, in some 
sense, the same. This is no longer true, however, in the nonlinear problem. 

The phenomena which arise in the time dependent scattering problem 
are perhaps best described by Figs. 5a, b, and c, which display typical 
realizations of a wave in a random slab. These realizations show the 
distinct behavior of the wave in linear, focusing, and defocusing random 
media. In the three cases the waves possess very different "localization 
features"--exponential localization in the linear case; in focusing non- 
linearities, solitary waves locked to local minima; the approach to a 
time-harmonic wave by a "semiclassical filling in process" in the case of 
defocusing nonlinearity. 

We show that time-harmonic solutions to random NLS are typically 
unstable; thus suggesting that earlier studies of time-harmonic localization 
for a fixed output problem are of limited relevance to the time dependent 
scattering problem. We have derived analytically bounds on the locations 
of the unstable eigenvalues. Numerically, we have shown that unstable 
eigenvalues indeed exist; moreover, we have computed some intriguing 
distributions of these unstable eigenvalues. These distributions are distinctly 
different in the focusing and defocusing cases. We have interpreted these 
instabilities in terms of resonances in the associated linearized problem. In 
addition, we note that since these unstable eigenfunctions tend to be sup- 
ported at critical points of the potential, which themselves are distributed 
throughout the entire medium, the effect of these instabilities is against 
localization. Finally, in the defocusing case, we develop a semi-classical 
argument to describe the "filling in process" toward a stable (but atypical) 
time-harmonic wave as observed in the numerical experiments. 

In the focusing case we have seen that the long time wavefunction 
appears to consist of a large number of soliton-like structures which are 
bound to local minima of the potential. The numerical experiments seem to 
indicate that these soliton-like structures can arise anywhere within the 
medium, and the amplitudes of these structures do not appear to decay 
with distance into the medium. Therefore we conjecture that in the case of 
a semi-infinite medium, for sufficiently long times the wavefunction will 
have mass located arbitrarily far into the medium. In the defocusing case 
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we have seen that the long time state of the wavefunction "mimics" the 
imposed external potential. Note that both of these effects appear to be a 
consequence of the fact that the incident plane wave has infinite mass. In 
both cases the apparent limiting states have infinite L2 norm. Since the 
NLS equation conserves L2 norm these solutions cannot evolve from an 
initial condition with finite L2 norm. Thus these conjectures do not con- 
tradict those by Frrlich, Spencer, and Wayne, where they conjecture that 
the NLS initial value problem localizes for L2 initial data. 

We close by mentioning several possible new directions: First, it would 
be interesting to understand the nature and origin of the fine structure in 
the k dependence of the reflection coefficients. Precise characterizations of 
localization in the nonlinear case, as well as equivalences between different 
definitions, are needed. In the case of spatially localized initial data, can 
localization be characterized in terms of bounded (or slow growth) of 
the variance? With such a characterization, can rigorous mathematical 
arguments be given which establish the presence or absence of localization? 
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